Bearing Fault Diagnosis Based on Laplace Wavelet Transform
نویسندگان
چکیده
The roller bearing characteristic frequencies contain very little energy, and are usually overwhelmed by noise and higher levels of structural vibrations. Therefore, envelope spectrum analysis is widely used to detection bearing localized fault. In order to overcome the shortcomings in the traditional envelope analysis in which manually specifying a resonant frequency band is required, a new approach based on the fusion of the Laplace wavelet transform and envelope spectrum is proposed for detection and diagnosis defects in roller element bearings. The basic principle is introduced in detail. Laplace wavelet transform is self-adaptive to non-stationary and non-linear signal. The methodology developed in this paper decomposes the original times series data in intrinsic oscillation modes, using the Laplace wavelet transform. Then the envelope spectrum is applied to the selected daughter wavelet that stands for the bearing faults. The experimental results show that Laplace wavelet can extract the impulse response from strong noise signals and can effectively diagnose the faults of bearing.
منابع مشابه
AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملApplication of Wavelet Packet Transform (WPT) for Bearing Fault Diagnosis
The bearings are the most important mechanical elements of rotating machinery. They are employed to support and rotate the shafts in rotating machinery. On the other hand, any fault in bearing can lead to losses on the level of production and equipments as well as creation an unsafe working environment for human. For these reasons, Condition monitoring and fault diagnosis of these bearings has ...
متن کاملRolling Element Bearing Fault Diagnosis Using Laplace-Wavelet Envelope Power Spectrum
The bearing characteristic frequencies (BCF) contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations. They are difficult to find in their frequency spectra when using the common technique of fast fourier transforms (FFT). Therefore, Envelope Detection (ED) has always been used with FFT to identify faults occurring at the BCF. However, th...
متن کاملMulti-Scale Hermitian Wavelet Order Envelope Spectrum Based Bearing Fault Detection and Diagnosis
The multi-scale Hermitian wavelet order envelope spectrum based bearing fault detection and diagnosis method under run-up condition is presented in this paper. This new approach based on the fusion of the computed order tracking, Hermitian wavelet transform and envelope spectrum is used for detection defects in roller element bearings. Firstly, Non-stationary vibration signal under run-up condi...
متن کامل